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Abstract Consider a population of farmers who live around a lake. Each
farmer engages in trade with his two adjacent neighbors. The trade is governed
by a prisoner’s dilemma ‘rule of engagement.’ A farmer’s payoff is the sum
of the payoffs from the two prisoner’s dilemma games played with his two
neighbors. When a farmer dies, his son takes over. The son decides whether to
cooperate or defect by considering the actions taken and the payoffs received
by the most prosperous members of the group comprising his own father and
a set of his father’s neighbors. The size of this set, which can vary, is termed
the ‘span of information.’ It is shown that a larger span of information can
be detrimental to the stable coexistence of cooperation and defection, and
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that in well-defined circumstances, a large span of information leads to an
end of cooperation, whereas a small span does not. Conditions are outlined
under which, when individuals’ optimization is based on the assessment of less
information, the social outcome is better than when optimization is based on
an assessment of, and a corresponding response to, more information.

Keywords Span of interaction · Span of information · Imitation ·
Social welfare

JEL Classifications D83 · R12 · O4

1 Introduction

Why did natural selection not eradicate cooperating behavior a long time ago?
Many scientists from a variety of disciplines have posed this question and
have sought to respond to it by resorting to a variety of methods. Utilizing
evolutionary game theory,1 for instance, the intertemporal development of
behavioral patterns such as cooperation (or defection), can be analyzed by
investigating the evolution of a population ‘inflicted’ with these patterns that
is subject to selection (rather than by examining two rational individuals
interacting with each other; Maynard Smith 1982). In particular, the evolution
of cooperating and defection behavior in a population of individuals can be
analyzed by drawing upon an iterated prisoner’s dilemma game (cf. Bergstrom
and Stark 1993). Conditions for groups of cooperators not to be removed by
natural selection must thus have features guaranteeing some sort of preferen-
tial interaction as is the case, for example, when interaction is confined to a
small set of (neighboring) individuals.

A setting in which cooperators form clusters in a spatial layout of the
prisoner’s dilemma game allows for the long-run coexistence of cooperating
and non-cooperating behavior because cooperators in the interior of a cluster
come off nicely as compared to defectors at the boundary of the cluster
(Nowak and May 1992). Thus, the behavioral pattern of defection does not
spread over to the neighborhood of cooperators. Bergstrom and Stark (1993)
identify evolutionary environments that are conducive to the long-run survival
of the cooperating strategy in prisoner’s dilemma games. Jun and Sethi (2007)
extend the model of Eshel et al. (1998), which in turn draws upon the model
of Bergstrom and Stark (1993), and explore comprehensively the effect of
changes in the neighborhood structure on the viability of the cooperating
strategy. Jun and Sethi (2007) assume that each individual interacts with a
multitude of adjacent neighbors, compared to interaction being limited to two

1See, for example, Weibull (1995), Samuelson (1997), Fudenberg and Levine (1998), and Hofbauer
and Sigmund (1998).
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adjacent neighbors, as in Bergstrom and Stark (1993), or as in Eshel et al.
(1998).

Merging the economics of social structures with the economics of informa-
tion can yield interesting results regarding the advantages and disadvantages
of learning from others, imitating others, optimizing subject to alternative
informational constraints, and the optimal layout of neighborhoods. Following
Outkin’s (2003) argument that in an interconnected world individual decisions
are affected by socially distant people (or even by people whom we have never
met), we adapt the social structure of Bergstrom and Stark (1993) by allowing
information to flow in from beyond the immediate vicinity. Thus, when it
comes to decision making, the individuals analyzed in this paper differ from the
individuals analyzed in much of the received literature (who populate cycles,2

or more generally, ring lattices,3 and grids in the plane4) in that they draw on
an informational environment that does not necessarily coincide with the social
structure of exchange. Put differently, by allowing arbitrary spans of informa-
tion to come into play, we extend the neighborhood structure of Bergstrom and
Stark (1993), distinguishing the influence of neighbors with whom individuals
interact from the influence of individuals whose good example (and ‘business’
success strategies) individuals could mimic. Consequently, we diverge both
from the structure of Bisin et al. (2006) who study ‘economies in which the
distribution of information across the agents, as well as their interactions, are
local’ (p. 75), and from the elaborate neighborhood ‘network’ of Jun and Sethi
(2007).

Making these extensions, what will happen to the prevalence of the coop-
erating strategy in the population at large? What will the social welfare (per
capita payoff) consequences be of such prevalence, or of its absence? What
inferences can be drawn with regard to the existence of an equilibrium fraction
of cooperators under different quantities of information? The answers to these
questions can be perplexing and often differ from the views expressed in the
received literature. In this regard, the present paper complements the received
literature.

2 The model

In numerous settings, the fortunes and misfortunes of individuals depend on
the trade that they conduct with their neighbors, and on the traits of these

2See, for example, Ellison (1993), Eshel et al. (1998), and Ohtsuki and Nowak (2006). Ellison
(1993) studies a version of best-reply dynamics; the latter authors concentrate on imitation
dynamics.
3See, for example, Jun and Sethi (2007) who study comprehensively the impact of the structure of
a neighborhood on survival and on the stability of cooperating behavior for an arbitrary number
of neighbors, when imitation is the driving force behind natural selection.
4See, for example, Blume (1993), Nowak and May (1992, 1993), and Nowak et al. (1994). Nowak
and May (1992, 1993) and Nowak et al. (1994) concentrate on imitation rather than on dynamics
based on best-reply strategies, as does Blume (1993).
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neighbors. Following Bergstrom and Stark (1993), Stark (1998), and Outkin
(2003), let us consider a finite population of individuals who live around a
lake. Let us assume that each individual engages in trade or exchange with
his two nearest neighbors. The trade is governed by a prisoner’s dilemma ‘rule
of engagement,’ and each individual’s income is the sum of the payoffs from
the two prisoner’s dilemma games, where the payoff matrix of a single game is
given by

Column player
C D

Row player C R,R S,T
D T,S P,P

where S < P < R < T. Moreover we require that

T + P < 2R. (1)

To interpret assumption 1, let us think of the individuals as farmers. The
exchange between the farmers arises from a need to engage in barter, say,
in labor inputs or in produce, or from a need to collaborate (join forces) in
production-related activities such as pest control. While an individual cannot
survive on his own (exchange is mandatory to sustain life), the individual’s
conduct, as implied by the prisoner’s dilemma structure, is subject to choice,
as explained below. Assumption 1 guarantees that a cooperator surrounded
by cooperators comes off better than a defector at the border of a defector
cluster.

Throughout this paper we draw upon a schematic picture of a farmer
community consisting of n ∈ N individuals. We introduce dynamics by postu-
lating that when the farmers die and their n sons take over, the sons decide
whether to cooperate or defect by considering the actions taken and the
payoffs received by (part of) their father’s generation. Whose performance
would be considered? In a farmer community, it is natural to assume that
while individuals are much more likely to ‘trade’ with adjacent neighbors
(deliver or pick up begs of fertilizer, fetch or supply manure) than with farmers
farther away, they receive information both about adjacent individuals and
about more distant individuals. Therefore, the ‘span of trade,’ which for the
remainder of this paper we will set equal to the two immediate neighbors, is
likely to be smaller than the ‘span of information,’ measured by the number of
individuals (in addition to one’s father), r, that a descendent learns from. Thus,
we require that 2 ≤ r ≤ n − 1, and that r is an even (natural) number.5

We introduce optimization (maximization subject to an informational con-
straint) by postulating that when the farmers’ descendents take over the farms,

5In an appendix available on request, we study a span of trade that is larger than that of two
immediate neighbors.
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they replicate the behavior of the most prosperous of their fathers, the father’s
r/2 neighbors to the left, and the father’s r/2 neighbors to the right.

We know from Jun and Sethi (2007), whose analysis is based on the
assessment of average payoffs, that increasing the span of trade renders the
existence of a sustainable sole-cooperator equilibrium more likely given that
the fathers’ trading partners are identical to the individuals from whom the
descendents learn (that is, when the span of trade and the span of information
are the same). What will happen, however, when the informational constraint
under which optimization is carried out is less binding than the trading
constraint? Suppose, for example, that instead of imitating the behavior of
his father or of his father’s two nearest neighbors depending on who is
the most prosperous (Subsection 3.1), a son who inherits his father’s farm
imitates the behavior that is more successful among his father and his father’s
four neighbors (Subsection 3.2) or at least six neighbors (Subsection 3.3).
Does the cooperating strategy spread faster if optimization is based on the
assessment of more information? And how is it that social welfare outcomes
depend on how many the sons learn from? Subsequent subsections will thus
seek to shed light on the relationship between the span of information, r,
and the nature of (an intertemporal) equilibrium (Subsection 3.4), and on
the relationship between the span of information and the wellbeing of the
community (Subsection 3.5). A brief summary and complementary reflec-
tions that attest to the robustness of our main argument are provided in
Section 4.

3 On the long-run survival of cooperation

In the next three subsections we depict and explore a specific stylized example.
In Subsection 3.4 we generalize for an arbitrary population size, n, and for
an arbitrary span of information, r. In Subsection 3.5 we trace out the social
welfare repercussions of changes in the long-run composition of the modeled
population. This we obtain without resorting to parameter specifications.

3.1 Imitating the behavior of the more successful of an individual’s father
and the father’s two adjacent neighbors

Let the community consist of n = 12 farmers. Each of these farmers trades with
his immediate neighbors. In the diagrams that follow, a number by the side of
a letter representing the selected strategy, C or D, is the farmer’s total payoff,
which can be conceived to measure the output of some agricultural good.

We calibrate the prisoner dilemma’s payoffs in line with assumption 1:
S = 0, P = 1/4, R = 3/4, and T = 1. Initially, all the farmers are cooperators
playing C, as depicted in Fig. 1. When a farmer’s son takes over, he imitates
the most prosperous of his father and of the father’s two adjacent neighbors
(r = 2). Consequently, generation after generation, all farmers are cooperators
who have each a payoff of 2R = 11/2 units of farm goods.
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C 1

C  1
1 C

1
C

1 C

C  1

1 C

1 C

C 1

C 1

1 C

1 C

Fig. 1 A community of twelve cooperating farmers (generation 1)

Suppose, alternatively, that one of the n = 12 farmers is a defector6

(playing D), who thereby exploits the cooperating nature of his two adjacent
neighbors, gaining a payoff of 2T = 2 >11/2 = 2R, as in Fig. 2. Let the fraction
of cooperators in the i-th generation of the population be given by xi, where
xi ∈ [0, 1] for i = 0, 1, 2, ... . Then, x 1 = 11/12 .

In the next generation, cf. Fig. 3, there will be three defectors, as the sons’ of
the ‘ripped-off’ farmers become defectors as well (due to a simple comparison
of payoffs; one such comparison is illustrated by the dashed arrows in Fig. 2).
The payoff of each of these two descendents will, however, be only T + P =
11/4 , as they are neighboring the initial defector’s offspring (from whose father
he has learned the seemingly successful D-strategy). The descendent of the
initial defector fairs, however, worse than any other member of the community
since both his neighbors are defectors. His payoff is a mere 2P = 1/2. If we
measure social welfare by output (payoff) per capita, then due to the reaction
to the mutant defector, the whole community is worse off in generation 2 than
in generation 1, when the fraction of cooperators is x 2 = 3/4 .

Since, according to Eq. 1, the two defectors at the border of the DDD-
cluster7 (Fig. 3; north of the lake) receive a smaller payoff than the
cooperators two farms away, a cooperator immediately neighboring the DDD-
cluster replicates the strategy of the neighboring cooperator and not that of

6Here we assume that the defector appears in the population because of a mutation. Alternatively,
a defector could possibly enter the community of farmers via migration. In such a case, the size of
the population will become n + 1. The qualitative results of the analysis will hold, however.
7Note that even though individuals are living along a road, we use the term ‘cluster’ to refer to a
set of at least two neighboring individuals of the same type.
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C  1
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C

2
D

1 C

C  1

1 C

1 C

C  1

C  1

1 C

1 C

Fig. 2 A community of twelve farmers with a mutant defector (generation 1) for r = 2; the
comparison of a descendent’s payoff in generation 2 is indicated by dashed arrows

the neighboring defector. Therefore, the DDD-cluster does not expand in size.
The defectors at the border of the DDD-cluster, on the other hand, cannot
‘see’ far enough to spot the successful cooperator (successful he is because
he receives a payoff of 2R = 11/2 ) and thus they adhere to their D-strategy.

C  1

D  11 D

D

C

C

1 C

1 C

C  1

C  1

1 C

1 C

Fig. 3 A community of twelve farmers (generation 2) for r = 2; the comparison of the payoffs of
two descendents in generation 3 is indicated by dashed arrows
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Hence, the DDD-cluster does not shrink either; the fraction of cooperators is
equal to x3 = 3/4 and likewise, generation after generation. Consequently, Fig. 3
depicts the equilibrium configuration in the wake of the mutation (C → D) of
a single individual. The long-run fraction of cooperators in the population will
therefore be x̂ = 1 − 3/n , which in the case of n = 12 yields x̂ = 3/4.

Investigating other initial configurations of defectors, we find that clusters
of two mutant neighboring defectors expand to stable DDDD-clusters, while
all clusters of at least three mutant defectors remain stable in size as long as
they are separated from each other by at least three neighboring cooperators
(or, for that matter, as long as they are separated from isolated defectors by
at least four neighboring cooperators). Therefore, the ‘fate’ of the community
depends not only on the number of mutant defectors, but also on their spread,
that is, on the space between them. If there are only a few mutant defectors
in a large community of cooperators then, by and large, the community
remains a community of cooperators, the few spotted islands of defectors
notwithstanding. Then, defectors never ‘take over’ the entire population. If,
however, the number of the mutations is excessive, there will not be enough
space left in-between the mutants to avert the spread of the defection strategy
over the entire farming community: the requirement that for at least one
isolated mutant defector there have to be at least five neighboring cooperators
(to the left or to the right) separating the D-type individual from another
isolated defector is the minimal requirement needed to guarantee the long-
run survival of a positive fraction of C-type individuals.8 Then defector clusters
cannot expand and the long-run equilibrium composition of the population is a
mixture of cooperators and defectors. If there are fewer than three coopera-
tors, then there will be a pure defector community, entailing a per capita payoff
smaller than that of any other steady-state composition of the community.

3.2 Imitating the behavior of the more successful of an individual’s father
and the father’s four adjacent neighbors

Let there be twelve farmers, as in Fig. 1. Initially, all the farmers are coop-
erators. When the farmers’ sons take over they imitate the most prosperous
of their own father and their father’s four neighbors (r = 4). Consequently,
generation after generation, all farmers are cooperators. Suppose, alterna-
tively, that one of the twelve farmers mutates to a defector. The opening

8When we have an isolated mutant defector, the requirement of five cooperators to the left and five
cooperators to the right to separate the defector from another isolated mutant defector guarantees
that two cooperator clusters which are large enough to ‘recapture’ the population survive. If there
was one additional isolated defector, we would only need five cooperators on one side of the
additional defector to ensure the existence of a third non-vanishing cooperator cluster, because on
the other side we have already required presence of five neighboring cooperators. We can conclude
that in this sense, the requirement of five neighboring cooperators per isolated mutant defector is a
rather stringent condition to guarantee the long-run survival of the cooperating strategy, whereas
the requirement of five neighboring cooperators for at least one isolated mutant defectors is the
minimal requirement for guaranteeing the survival of at least one (small) cluster of cooperators.
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C

DD

1 D
1 D

C

1 C

C  1

C  1

1 C

1 C

D

Fig. 4 A community of twelve farmers (generation 2) for r = 4; the comparison of a descendent’s
payoff in generation 3 indicated by dashed arrows

configuration is depicted in Fig. 2. In the next generation, a cluster of five
defectors is formed, as in Fig. 4. Therefore, the fraction of cooperators is
x 2 = 7/12 .

The second generation, which includes a cluster of five defectors, will be
followed by a third generation, with a cluster of three defectors (Fig. 3 above),
because the sons of the defectors who are at the boundary of the DDDDD clus-
ter follow the example of cooperators who are two farms away (as indicated
by the dashed arrows in Fig. 4 for one defector at the boundary of the cluster);
thus, the fraction of cooperators becomes x3 = 3/4. The subsequent, fourth,
generation will revert to the original configuration as per Fig. 2. Hence, a stable
3-periodic fixed point is generated, with ‘blinkers’ that switch from a single
defector surrounded by eleven cooperators to a cluster of five defectors, then
to a cluster of three defectors and then back to a single defector surrounded
by eleven cooperators. In the long run, each of the population’s splits of
(defectors, cooperators): (1,11), (5,7), and (3,9) will exist one third of the time.
Therefore, the long-run mean fraction of cooperators in the population is equal
to (x1 + x2 + x3)/3, which in turn is equal to x̂ = 1 − 3/n, and which in the case
of n = 12 yields x̂ = 3/4, exactly as in the case of the more constrained imitation
delineated in the preceding subsection.

3.3 Imitating the behavior of the more successful of an individual’s father
and the father’s six or more adjacent neighbors

If individuals in our twelve-farmer community learn from neighbors up to
three farms away (r = 6), the seemingly good news about the fortunes of
a mutant defector in generation 1 spread to his descendent and across the
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D

DD

D
D

D

D

D

D  1 

1 D

0 C

D

Fig. 5 A community of twelve farmers (generation 1) for r = 10

descendents of three neighbors to the left and three neighbors to the right.
Their seven descendents become defectors in generation 2. The fraction
of cooperators is then x 2 = 5/12. The sons of the immediately neighboring
cooperators decide, however, to maintain the C-type strategy of their fathers,
because information about a cooperative farmer who is neighbored by another
cooperator on each side is coming their way.9 Thus, in generation 3, the
defectors’ cluster is as in Fig. 3, and the fraction of cooperators is x 3 = 3/4.
Since the descendents of the three defectors are aware of the success of
cooperators who are trading with two neighboring cooperators, generation
4 consists only of cooperators; the fraction of cooperators is then x4 = 1.
Consequently, generation after generation, all farmers are cooperators, with
a (maximal) per capita payoff of 2R = 11/2.

The preceding procedure can likewise be repeated for r = 8. But what
happens for r = 10? In this case, the descendents of the five neighbors to the
left of the mutant defector and of the five neighbors to the right of the mutant
defector become ‘infected’ by the seemingly successful defecting behavior, as
in Fig. 5. This leaves us with a single cooperator who collects a zero payoff.
In generation 2, the descendent of this sole cooperator will defect as well. The
descendents of the defectors cannot be induced to return to the cooperative
mold, since no cooperator is left as ‘an example’ of the success of this mold.

9Nonetheless, since in generation 2
(
5 × 2P + 2 × (T + P) + 2 × (S + R) + 5 × 2R = 5 × 1

/
2 + 2×

11
/

4 + 2 × 3
/

4 + 3 × 11
/

2 = 11
)
, while in generation 1

(
2T + 2 × (S + R)+ 9 × 2R = 2 + 2 × 3

/
4+

9 × 11
/

2 = 17
)
, the population is worse off.
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Consequently, generation after generation all farmers are defectors, with a per
capita payoff of 2P = 1/2. Thus, for a given population size, an expansion of the
span of information, holding constant the span of interaction, is detrimental to
the wellbeing of the lakeside community.10

Consequently, in order to guarantee that a single mutant defector does
not take over the entire population, then in the second generation (where
the maximum expansion of defectors occurs), there must be at least one
cooperating farmer who is neighbored by another cooperator on each side,
given the payoff structure of Eq. 1. In other words, for the long-run survival
of cooperating behavior in a population it is necessary that some islands of
cooperators exist, which are blind or deaf to the success of the mutant defector.

3.4 The evolving composition of the farmer community for an arbitrary
population size n, and an arbitrary span of information r

For a trade to take place, we obviously assumed that the community consists
of at least two farmers. To allow for trades with neighbors on each side,
we obviously need to assume a community of at least three farmers (that is,
that n ≥ 3). Let the generation 0 fraction of farmers who are cooperators be
x0 = 1. If one of the cooperator farmers ‘mutates’ to a defector, the fraction of
cooperators in generation 1 becomes

x 1 = 1 − 1/n . (2)

The information about the payoff garnered by the mutant defector (2T) in
generation 1 spreads in generation 2 to the descendents of r/2 neighbors to the
left and to the descendents of r/2 neighbors to the right, where r is equal to 2, 4,
6, . . .. This spread decreases the fraction of cooperators in generation 2 (for an
arbitrary n) to

x 2 =
{

x 1 − r/n = 1 − 1/n ( r + 1) n > r + 1
0 n ≤ r + 1.

(3)

According to Eq. 3, a fraction of cooperators x2 ∈ (0, 1] survives in generation
2 if r = 2, 4, 6,..., n − 2 (if n is an even number) or if r = 2, 4, 6,..., n − 3 (if n is
an odd number). According to Eq. 3, only if r = n − 1 and n is an odd number
then no cooperator remains in the community, and the second generation
consists entirely of defectors; and likewise generation after generation. The
fraction of cooperators then remains zero, that is, x 2 = x 3 = x 4 = . . . = x̂ = 0.

We proceed by distinguishing between two cases, according to a further
refinement of the relationship between the population size n and the span
of information r < n − 1. Without loss of generality, we emphasize in what
follows the case of an even population size yet for the sake of completeness,
we provide results also for an odd population size.

10This result complements the results of Jun and Sethi (2007) who do not study the intersection of
‘global information’ with ‘local interaction.’
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Case 1 The size of the population is given by n < r + 4 (if n is an even
number), or by n < r + 5 (if n is an odd number)

When n < r + 4 and n is an even number, we know from Eq. 3 that it is im-
possible that in generation 2 a ‘successful’ cooperator exists who is neighbored
by a cooperator to the left and by a cooperator to the right. (A cooperator
is termed ‘successful’ as and when because he is neighbored by a cooperator
to the left and by a cooperator to the right, he receives a payoff of 2R.)
Therefore, the most successful individuals are defectors neighbored by one
cooperator (receiving each a payoff of T + P, which, according to the rank-
ing of the payoffs (T > R > P > S), maintains that T + P > R + P > R +
S > 2S). Information about the success of these individuals now spreads,
converting the community into a pure defector community:

x 3 = 0. (4)

Thus, according to Eq. 4, if r = n − 2 (if n is an even number) or if r = n − 3
(if n is an odd number), in generation 3 there is no cooperator left in the
community from whom to learn about the benefits of the C-strategy in a
neighborhood of cooperators. Thus, it must be that the fraction of cooperators
in the community remains zero, that is, x 3 = x 4 = . . . = x̂ = 0.

Case 2 The size of the population is given by n ≥ r + 4 (if n is an even
number), or by n ≥ r + 5 (if n is an odd number)

When n ≥ r + 4 and n is an even number, we know from Eq. 3 that in
generation 2 at least one ‘successful’ cooperator must exist who is neighbored
by a cooperator to the left and by a cooperator to the right (receiving thereby
the payoff of 2R). Consider then the neighborhood of a cooperator who is
separated from the cluster of the r + 1 defectors by exactly one ‘non-successful’
cooperator (non-successful he is since he receives a payoff of R + S < 2R). On
this side, the information about the payoff of the successful cooperator spreads
then to the descendent of the immediately neighboring non-successful cooper-
ator and to the descendents of the r/2 − 1 defectors immediately neighboring
the non-successful cooperator. Since the payoff of a defector neighbored by
two defectors is 2P < 2R, and the payoff of a defector neighbored by a
cooperator on one side and a defector on the other side is T + P, and since
(according to Eq. 1) T + P < 2R, the fraction of cooperators in generation 3
becomes

x 3 = x 2 + 1/n
[(r/2 − 1

) + (r/2 − 1
)] = 1 − 3/n. (5)

Equation 5 tells us that irrespective of the span of information (that is, r = 2,

4, 6, ..., n − 4 (if n is an even number) or r = 2, 4, 6,..., n − 5 (if n is an odd
number)), in generation 3 a cluster of three neighboring defectors inhabits
the community of the farmers. Generation 4 evolves, however, differently for
different values of r. The success of the cooperator (receiving a payoff of 2R)

who is separated from the three neighboring defectors by an immediately
neighboring non-successful cooperator is replicated by the non-successful
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cooperator’s descendent and the r/2 − 1 descendents of the defectors who form
the cluster of the defectors in generation 3. This yields the following fraction
of cooperators in generation 4:

x 4 =
{

x 3 + 1/n
[(r/2 − 1

) + (r/2 − 1
)] = 1 + 1/n (r − 5) r − 5 < 0

1 r − 5 ≥ 0.
(6)

According to Eq. 6 we find that for r = 2, the fraction of cooperators re-
mains constant at x 4 = . . . = x̂ = 1 − 3/n, the fraction already given by Eqs. 3
and 5, while for r = 4, x4 = x1. Therefore, for r = 4, x i+3 = x i for all i ∈ N and,
consequently, x̂i+3 = x̂i. If r = 6, 8, ..., n − 4 (when n is an even number) or
if r = 6, 8, ..., n − 5 (when n is an odd number), defection is eliminated from
the population in generation 4, and x 4 = . . . = x̂ = 1. These results allow us
to calculate in a fairly straightforward way the steady-state per capita payoff
(or per capita income), a measure of the social welfare of the community
of n farmers, as a function of the span of information r. This we display in
Subsection 3.5.

3.5 Does assessing more information increase social welfare?

From the preceding discussion we infer that in spite of the appearance of a mu-
tant defector, a community of initially cooperating, locally learning optimizing
individuals can eventually exhibit either heterogeneity or perfect homogeneity
(consisting entirely of cooperators or entirely of defectors), depending on the
span of information, with heterogeneity being possible only if farmers learn
from a few (‘close’) individuals (r = 2, 4). Put differently, heterogeneity is only
possible if the span of information is small, while more information (r ≥ 6)
yields conformism.

Furthermore, we have learned that a single defector in a community of
cooperators can only be ‘successful’ in the sense of ‘spreading the D-strategy’
if the community size, n, is small relative to the span of information, r. That is,
after the information about the 2T-payoff of the mutant defector has spread
across the farmer community (converting r descendents into additional defec-
tors), there must be at least three neighboring cooperators left, guaranteeing
that the one in the middle receives a payoff of 2R, in order for cooperative
behavior to subsequently take over. Thus, we can conclude that if individuals
learn from more than n − 4 individuals,11 defection will eventually spread over
the entire community whereas otherwise it will not; cooperating behavior will
still prevail. What conclusions can we draw from this review of alternative
configurations about the wellbeing of the community?

From Subsection 3.4 we know that for r = 2 (and a population of at least
six farmers), the steady-state community after the community’s reaction to

11If n were an odd number, the condition would be n − 5. Unless otherwise noted, all the other
conditions (and results) are valid for both even and odd numbers of farmers.
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a mutation of one cooperator farmer into a defector farmer consists of a
three-defector cluster and a ‘cluster’ of n − 3 cooperators. Thus we know that
we have one defector neighbored by a defector on each side, two defectors
and two cooperators neighbored by a cooperator on one side and a defector
on the other side, and n − 5 cooperators neighbored by cooperators on both
sides. This yields the following aggregate steady-state payoff for the n-farmer
community

2P︸︷︷︸
< 2R

+2 (T + P)︸ ︷︷ ︸
< 2R

+2 (R + S)︸ ︷︷ ︸
< 2R

+ (n − 5) 2R

= 2T + (n − 4) 2R + 4P + 2S < n2R . (7)

For n ≥ 6, the per capita payoff for r = 2 can be directly derived from Eq. 7,
and is depicted in Fig. 6 for S = 0, P = 1/4, R = 3/4, and T = 1. The 3-periodic
steady-state population that emerges for r = 4 (and a population of at least
eight farmers) has a steady-state payoff that is already given by Eq. 7. (The
corresponding per capita payoff is depicted in Fig. 6 for S = 0, P = 1/4, R = 3/4,
and T = 1.) This means that as long as the span of information is smaller than
six, then even when more cooperators can witness the success of a defector, no
more cooperators switch to defection, on average. For n ≥ r + 4 ≥ 10 (if n is an
even number) or n ≥ r + 5 ≥ 11 (if n is an odd number), the long-run fraction
of cooperators increases, however, to one. This yields the highest payoff
steady-state configuration (n2R) for the community. The corresponding per
capita payoff (2R) is depicted in Fig. 6 for R = 3/4. If individuals’ optimization
were to be based on the assessment of more information than the critical level,
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Fig. 6 Per capita payoff as a function of the span of information, r, for n = 12 farmers, and when
the payoffs are S = 0, P = 1/4, R = 3/4, and T = 1
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that is r > n − 4 (if n is an even number; r > n − 5 if n is an odd number), then
the corresponding outcome would be a per capita payoff of 2P, as in Fig. 6 for
P = 1/4 .

We might well expect that the community’s per capita payoff will correlate
positively with the information available to the members of the community.
However, at least in the present setting, this is not the case, as illustrated by
Fig. 6. We see that when n is a natural number and n ≥ 3, r is an even number,
and 2 ≤ r ≤ n − 1, then

Y (n, r) =

⎧⎪⎪⎨
⎪⎪⎩

1/n (2T + (n − 4) 2R + 4P + 2S) r ≤ n − k, r = 2, 4

2R 6 ≤ r ≤ n − k

2P r > n − k

(8)

for k = 4 if n is an even number, or for k = 5 if n is an odd number.
Thus, for n ≥ 10 when n is an even number, and for n ≥ 11 when n is

an odd number,we can reformulate Eq. 8 as follows: as the span of infor-
mation r increases (starting from r = 2), the steady-state per capita pay-
off rises to its maximal level of 2R, and thereafter (for r > n − 4 if n is
an even number, or for r > n − 5 if n is an odd number) it sharply falls
to its minimal level of 2P.12 Since ∂

(
1/n (2T + (n − 4) 2R + 4P + 2S)

)
/∂n =(

1/n
)2

(−2 (T + P) + 8R − 2 (P + S)) > 0, that is, the derivative of the per
capita payoff with respect to population size n for r = 2,4 and n ≥ r + 4
(if n is an even number; n ≥ r + 5 otherwise) is positive, then, other things
being equal, a large community fairs better than a small community. We thus
conclude that when individuals’ optimization is based on the assessment of less
information (corresponding to what could be described as information being
spanned locally), the social outcome can be superior to that which would have
been obtained had individuals’ optimization been based on the assessment of,
and the corresponding response to, more information (corresponding to what
could be described as information being spanned globally), and that for a given
span of interaction, size confers an edge.13

12This finding is in nice congruence with the finding of Haag and Lagunoff (2006, p. 266) that
‘some [spatially less connected] designs are more conductive than others to socially desirable
outcomes.’ Note, however, that a Haag-and-Luganoff-type individual is forward-looking and ‘only
interacts with, and observes behavior of, those with whom he is linked’ (p. 266). Nonetheless, the
analogy of the results is revealing, since Haag and Luganoff study forward-looking agents (with
heterogeneous discount factors), whereas we study agents who ‘simply’ imitate past (seemingly
successful) strategies.
13If we were to relax the assumption that the farmers trade only with their adjacent neighbors
and assume instead that they trade also with the adjacent neighbors of their adjacent neighbors,
then we could show that the qualitative results reported in the paper carry over to this more
general case, provided that an additional, although quite natural set of assumptions on the payoff
structure is introduced. The reason for the need to make these additional assumptions is that
increasing the number of interactions from two to four increases the number of the possible payoff
configurations that have to be compared. An appendix displaying the case of a span of interaction
of four, variable spans of information, and the associated per capita payoffs, and illustrating the
conditional generalizability of the case analyzed in the paper, is available on request.
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We may now revisit the question posed at the outset: Why did natural
selection not eradicate cooperating behavior a long time ago? Why has our
global and interconnected society not been taken over by non-cooperators
learning from reports about the ‘prosperity’ of defectors? One reason could be
that the spread of information is still far from universal (with some ‘isolated’
populations being unaware of the success of the defectors). Another reason
could be that the pace of population growth is ahead of the pace at which
information networks widen. This would allow maintenance of a high level
of per capita income.14 Since we associate income with wellbeing and with a
community’s social welfare, our results indicate that an increase in the span of
information, r, from local to global, that is, of r becoming greater than n − 4
(if n is an even number) or n − 5 (if n is an odd number) leaves the community
worse off.

4 Summary and complementary reflections

We studied a community of farmers who interact (exchange) and optimize.
We placed a wedge between the farmers’ span of interaction and the farmers’
span of information, varying the latter to become larger than the former. We
have seen that limited knowledge about other farmers’ successes and failures
can lead to stable coexistence of cooperators and defectors in the farming
community. This happens when farmers never learn what goes on outside their
near neighborhood, and that the strategy of the grandfathers and the grand-
grandfathers is replicated by their descendents: when the farmers’ optimization
is based on the assessment of less information, the social outcome can be better
than when optimization is based on the assessment of, and the corresponding
response to, more information. If farmers also learn from distant neighbors
of their fathers’ neighbors, that is, if information links increase for a given
population size, it is indeed possible, as eloquently noted by Bala and Goyal
(1998), that ‘a society gets locked into a sub-optimal action’ (p. 609).

In subsequent work, we will seek to extend the analysis in several chal-
lenging directions. Four ideas come to mind. First, increasing the span of
interaction such that farmers do not trade only with their adjacent neighbors
but also with their neighbors’ neighbors will enable us to further study the
prerequisites that yield coexistence of cooperators and defectors.

14Yet another reason could be that the information that individuals marshal depreciates in
distance. For example, let more distant information be considered less credible, that is, let the
weight attached to information from an individual be inversely proportional to the distance that
the information travels (that is, to the distance between farms). Then, information about a mutant
defector will spread less aggressively. In such a case, even for large spans of information, a single
defector will hardly be able to ‘take over’ the entire community.



An evolutionary edge of knowing less (or: On the ‘curse’ of global information) 93

Second, holding the span of interaction at two, suppose that a mutation of
a C to a D occurs not only once, or solely in a particular generation. Imagine
that the first mutation is as per the preceding discussion (afflicting, say, farmer
number 12, where a number–name accorded to a farmer in the twelve-farmer
community is as per the hours of the clock; see Figs. 1–5), and that the second
mutation occurs to a second-generation cooperator who is separated from the
cluster of defectors that emerges as a consequence of the initial mutation by
two cooperators, viz. to cooperator 5 (or, for that matter, to cooperator 7).
When the span of information, r, is equal to four, it is easy to show that
convergence to an all-defector steady state will take four periods, whereas
when the span of information is 6, the said convergence will take three periods.
Here again, a higher r is detrimental to social-welfare, as the all-defectors
equilibrium is reached sooner.

Third, while in our setting a son imitates the most successful of his father and
a set of neighbors of his father, it might be interesting to ponder how would our
results change if, instead, a son were to imitate the most successful of his father,
a set of neighbors of his father, his grandfather, and a corresponding set of
neighbors of his grandfather. In such a case, the transition of the community to
its long-run steady state may change, but neither will the equilibrium fraction
of cooperators nor the steady-state per capita payoff. The only exceptions are
communities converging towards period-n fixed points (n ≥ 2). To see this,
consider a case in which a son learns from the experience of his father and that
of his father’s four adjacent neighbors and, additionally, also from the fathers
of those neighbors. In such a setting, the second generation (recall Fig. 4),
which includes a cluster of five defectors, will be followed by a third generation
of an identical composition since, by construction, the information about the
mutant defector from the grandfather’s generation lingers twice as long as in
the case originally studied by us. The fourth generation ‘hosts’ a cluster of
three defectors (recall Fig. 3), because the sons of the defectors who are at
the boundary of the DDDDD cluster follow the example of the cooperators
who are two farms away in their father’s or in their grandfather’s generation.
The subsequent, fifth, generation will then revert to the configuration of a
single defector as per Fig. 2. Thus, in this case, a stable 4-periodic fixed point
is generated (rather than a 3-periodic fixed point). In the long run, each of the
population’s splits of (defectors, cooperators): (1,11), (5,7), (5,7), and (3,9) will
exist one fourth of the time. Calculating the associated per capita income, we
find that it is smaller than in the case presented in Section 3.2. This discussion
reinforces then the tenor of our main argument: not only more information,
but also a ‘longer memory’ can be deleterious to the long-run survival of
cooperation.

Fourth, while the individuals in our setting are rational, they are not
sophisticated. If they were, then the strategy to adopt could differ from the
one that we have outlined. For example, suppose that in the case exhibited in
Fig. 3, the son of the cooperator farmer (farmer 2) has a cluster of defectors
as neighbors on one side and on the other a cooperator (farmer 3) who is in
turn surrounded by cooperators. In this case we anticipate that the son of the
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cooperator neighbor farmer 3 will be a cooperator. Then, it would be better
for him to select defection because he will end up with a payoff of T + P = 11/4

rather than with a payoff of R + S = 3/4. But if he were to select D, then
the son of farmer 3, realizing that he will have as neighbors a defector and
a cooperator, will choose defection (since 11/4 > 3/4), and so on, such that in
generation 4, the community will become an all-defector community (rather
than a mixed community of nine cooperators, and three defectors). This
example may prompt us to re-think our approach, perhaps suggesting to us
that not only more information, but also more sophistication, is detrimental to
the long-run survival of cooperation.
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